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Convergence and linear dispersion properties in implicit particle codes used in plasma 
simulation are investigated. Inconsistent spatial smoothing and simplified spatial differencing 
are shown to be closely related and degrade convergence and, if suitable care is not taken, 
stability. The convergence and dispersion properties of non-iterated, partially converged 
solution schemes are calculated. A careful combination of an implicit field solution with 
extrapolation of particle quantities using a previously calculated electric field need not 
degrade linear stability and dispersion characteristics. Even with some degradation of 
convergence? and with only one pass through the coupled particle and field equations on each 
time step, code performance can be entirely satisfactory if good stability and dispersion 
characteristics are preserved. 

1. INTRODUCTION 

The recently developed direct implicit particle simulation method [ 1, 21 relaxes 
severe stability constraints on time step that exist in explicit formulations, e.g., 
cop At < O(l), where wP is the plasma frequency. This permits more efficient 
simulation of long time-scale phenomena at long wavelengths. Much less stringent 
residual time-step constraints arise having to do with accuracy of the particle orbits 
and of the plasma dielectric response [3]. The direct implicit method readily extends 
to a two-dimensional magnetized algorithm [4] and to an electromagnetic version I.5 ]. 

A number of important aspects of the direct implicit particle simulation method 
have been studied theoretically in [2] and [ 31. One-dimensional simulations with the 
direct method have been reported in [ 1,4,6]. Barnes and co-workers have performed 

* This document was prepared as an account of work sponsored by an agency of the United Stares 
Coverment. Neither the United States Goverment nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liabilit:; or responsibility for 
the accuracy. completeness, or usefulness of any information. apparatus. product, or process disclosed. 
or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial products. process, or service by trade name, trademark. manufacturer, or otherwise. does not 
necessarily constitute or imply its endorsement, recommendation. or favormg by the United States 
Goverment or the University of California. The views and opinions of authors expressed hereIn do not 
necessarily state or reflect those of the United States Government thereof. and shall not be used for 
advertising or product endorsement purposes. 

51 
o&21-9991/w $3.00 

Copyrighr L 1984 by Academic Press, kc. 
Ail rights cf reproduction in any form reserved. 



52 COHEN, LANGDON, AND FRIEDMAN 

two-dimensional electrostatic simulations with an applied magnetic field [4]. Denavit 
is using a direct method in a hybrid simulation model [7]. Menyuk has applied these 
ideas to solve discrete mapping equations for Hamiltonian systems more ef- 
ficiently [8]. 

In order to achieve a practical advantage with implicit particle simulation over 
conventional explicit methods, stability at large cop At must be preserved when the 
effects of a spatial mesh and spatial smoothing are included. In addition, when 
shortcuts are taken in the spatial differencing with the aim of reducing the size of the 
matrix field equation and what must be collected and stored from particles [2], 
convergence and linear dispersion properties must be re-examined. Such 
considerations are of great importance in improving the economy and quality of two- 
and three-dimensional simulations. Furthermore, nonlinear accuracy may be 
improved by combining extrapolation using previously calculated quantities with an 
implicit solution of the implicit field-particle equations. 

In [2] and [3] we investigated, among other things, dispersion characteristics of 
time-integration schemes ignoring spatial differencing in [3] and considered some 
spatial differencing issues in [2]. In [2] we found that rigorous adherence to 
systematic and rigorous differencing and interpolation procedures (“strict” 
differencing) led to good convergence and stability characteristics, but that ad hoc 
spatial differencing and inconsistent spatial smoothing could degrade convergence 
and stability. We extend that discussion here and demonstrate that convergence and 
linear dispersion characteristics are related. Use of the electric field from the last 
previous time step as a first guess for the field at the advanced time level improves 
accuracy and does not influence linear dispersion and stability if strict spatial 
differencing and consistent smoothing are used. With simplified differencing or incon- 
sistent smoothing, extrapolation with an old electric-field value can introduce a phase 
error that degrades linear dispersion properties. An improved extrapolation scheme is 
presented that does not introduce phase errors. The analysis given in this paper is one 
dimensional; the extension to two dimensions is straightforward, as demonstrated in 

[21. 
The plan of the paper is as follows. Section 2 reviews the rudiments of the direct 

implicit particle simulation method. In Section 3 we elaborate on the discussion of the 
convergence of the field-particle equations that appeared in [2]. This provides a 
prologue to Section 4 in which we derive the cold-plasma linear dispersion relation 
for several versions of the direct implicit particle simulation method. The analysis 
determines the influences of spatial differencing, smoothing, and electric-field 
extrapolation. We find that the theory agrees favorably with one-dimensional 
simulation examples. We present conclusions in Section 5. 
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2. THE DIRECT IMPLICIT METHOD 

The essence of the direct implicit method is illustrated in the following one- 
dimensional electrostatic example. The charge density is 

py+Lq, F- S(Xj - x;l-’ ), 
k 

where j is the grid index, k is the particle index, 9 is the charge, S is the particle-grid 
interpolation spline, and the superscript II + 1 denotes the time level. If we expand S 
with respect to a predicted position ,fi” using known positions, velocities and 
accelerations (see Section 4.1). then 

s(x,-~;:+~)~s(x,-~~+~)+(~;:+~-~~~+~j(d~d~~~js(~,-.u’~~~j. (2) 

The particle equation of motion can be written as 

where ,8 is a parameter controlling implicitness. With summation over species 
understood, Poisson’s equation in rationalized c.g.s. units becomes 

where $ + ’ is the charge density based on use of .fi” in Eq. (1). For linear splines 
there is no contribution to Eq. (4) for /i -j/ > 1, Ax’ dS/df, = f 1 or 0, and the field 
equation is penta-diagonal. The relative error in the expansion procedure is 
j?wf, At2 = IjlqE At’/mL,I. where wt, is the electrostatic trapping frequency and L, is 
the length scale over which the electric field E varies. Further discussion of this form 
of the direct method is found in [ 1 ] and Section 2 of [ 2 ]~ -Appendix A of [2 / 
demonstrates the connection of the implicit moment and direct implicit methods. 

3. CONVERGENCE 

In 121, Poisson’s equation was cast in an iterative form, 

-v . i’[l fX”ryC &p+ “1 = p(i) + v2@(r’3 

where x (I’) is the effective susceptibility deducible from the second term in Eq. (4). the 
superscript (r) or (r + 1) indicates an iteration level. and the time level n + 1 is 



54 COHEN, LANGDON, AND FRIEDMAN 

understood. The ratio of successive residuals ]p(“+” - V . EC”+” ] is a measure of the 
convergence of this iteration. With only one pass through the particle and field 
equations on each time step, as is the case with all applications of the direct method 
so far [l, 4, 61, the residual ]p(” - V . E”’ ] gives a quantitative measure of the 
accuracy and convergence of the solutions of the coupled particle and field equations. 

On each iteration the particle position in a one-dimensional formulation is updated 
according to 

x;;“’ = p At2 a;,+yx;,f’y + fn + ’ ) (6) 

which is an iterative refinement of Eq. (3) and was described in detail in Section 3.1 
of [2]. The increment 8x:’ ” = A$+” - xy’ is given by 

-I 

l-/?qAt2m~‘Ax~Ei 
i 

$s(Xi - xf’) 
k I 

(7) 

through linear order. From 6x we form GpCrt Ii = -V . [p (r’ &(‘+ “1 = 
-V . [xCr’ dE(‘+‘)], where 

(r) 
Xjt I j2.j' = c /3W’ At’ q’m-‘S(Xj, -x:‘) (84 

kej+ I/2 

and 

r 

Nr I-pqAt2m-‘Ax~Ei&S(Xi-xy)). 
i h 

(8b) 

Hence, by construction 

IP cf.+‘) - v . Et’+‘) 1 = Ip(‘) + ap(r+ ‘! _ V . EC’) _ V . gE”t “1 

=Iv. (1 +X”‘)&“+” +6p”“+‘) -V. &d’+“l 

zz 1 v . fr) gE”+ ‘) + dp(‘+ ‘) I = 0, 

through order @I;~ At’. 

(9) 

If we omit the Newton-Raphson correction in Eq. @a) by setting Nr 1, as has 
been done in all applications, convergence is weaker, 

IP (,.+ ‘) - v . EC”+ ‘) ) = 1 v . (jtr)/jqm -’ At2 &“/ax) &(‘+ 1’ 1 

I/#‘) - V . EC’) I (V. (1 +X(r))&(‘+‘)I ’ (103 

because the numerator no longer vanishes at this order. 
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With consistent spatial filtering [2], Poisson’s equation is 

-v . [ 1 + s,s,x’r’] v d$y+1 = p1,” + V$y), i: 1‘1 \ ,I 

where S, and Sz are smoothing operators acting on everything to their right, and 
P, = S,S, P and (#,, @,I = SAA 84) are the smoothed charge density and potentials. 
Weaker convergence also results when inconsistent smoothing is used. For example, 
if Xcr’ were inconsistently smoothed so that V . [x’~’ 8E(“*“] + V . [.?2g,~‘r’ 6E”+ I’]. 
then 

IP ('.+"-V .E"+"l IV. (~~S,-S2S,)~'r'SE'~+'~I 

lp(" -V . @"I = /V. (1 +f”)6E”+*‘1 . 
(12) 

For typical smoothing operators, convergence will be worse for densities and electric 
fields that vary rapidly in space. Barnes et al. [4] have found much more reliable 
code behavior with use of consistent spatial smoothing. while inconsistent smoothing 
led to grief. 

Simplified, ad hoc differencing schemes [2,4] have been employed to reduce the 
bandwidth of the matrix field equation, a matter of great importance in two- and 
three-dimensional applications. However, simplified differencing can degrade 
convergence. Two types of errors can arise that contribute to jptr+” - v . E(‘+ “1. 
The first has been encountered already and results from the inconsistency of xCr’ and 
the equations leading to 8x(‘+” and p(‘+“. The other error is due to the represen- 
tation of V . x 6E and is much like that due to inconsistent spatial smoothing. A 
representative calculation gives 

IP (t’+ I’ _ V . EC’+ 1’1 I(0 . X(r’ ,jE”+ I’), _ V . Xlr’ &(‘f 1) 1 
lp(” - V . E”‘I = IV. (1 +,(“)8E”+“i ’ 

(13) 

where V . x 6E is a form using strict differencing, and ( )’ indicates the simplified- 
differencing version. The derivation of Eq. (13) is the same as Eq. (12); we have 
added and subtracted the strictly differenced V . [x’~’ ZiE(““] to the field equation, 
using the fact that the numerator of Eq. (13) vanishes for strict differencing. Rapid 
variations in the plasma density lead to a loss of convergence through the difference 
in susceptibilities. Spatial smoothing may help here. However. even in a uniform 
plasma, different electric-field stencils can cause a loss of convergence at short 
wavelengths. 

4. LINEAR DISPERSION RELATION 

4.1. Grid Effects 

Analysis of the dispersion relation for a simple harmonic oscillator [3] gives useful 
information on stability at large w At and accuracy at small CO At. Consider iteration 
schemes as described in [2] and suggested here in Eq. (5) with the initial estimate 
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a”’ = 0 and strict spatial differencing. A linear expansion of the equations of ntl 
motion for a small-amplitude oscillation demonstrates that all linear quantities 
converge exactly on the initial iteration step. Thus, analysis of just the implicit 
predictor step is suffkient and is appropriate to all of the applications of the direct 
implicit method [ 1,4,6]. 

We consider here two general classes of time integration schemes described in [3]. 
The class “C” schemes introduced in [9] and analyzed in [3] are represented by the 
difference equations 

X n+l =~,+v,+~d~+c~(a,+~ -art) At’ + c,(a, - a,-,) At2 + au* 

V n + l/2 = Vn - l/2 + a, At. 

In these schemes, gn+ r = x, + v,+ 1,2 At - cOan At + c,(a, - a,- ,) At* + ... . The class 
“D,” scheme introduced in [3] can be represented in the form 

X n+1 = x, + v, + ,,2 At 

V?l t l/2 = yn- l/2 + ii,, At, 

where 5, = l/2(&_, + a,,,). Here gn+, =x, + v,,-,,~ At + 1/2a,-, At’. The particle 
displacement responses to an acceleration are 

X/AAtz=co+c,/z+c2/z2+~~~+z/(z-1)’ (144 

and 

X/z4 At2 =z’(z - l)-‘(do + d,/z + d2/z2 + . ..)-‘. (14b) 

where (x,, a,) = (X, A) zn, z = exp(-iw At), do + d, + d, + ... = 1 for D schemes in 
general, and do = 2 and d, = -1 for the D, scheme. 

We next employ the methods of [9] and [IO] to analyze the effects of strict spatial 
differencing. Specializing to the class of momentum conserving schemes, from [2] we 
have for the implicit increment to the charge density Sp and the polarization P, 

where 

-pAt2x dAx 
Xj* l/2,./~ - ~Sm~Xj~~Xi~Sm-1~Xjtl/2~Xi~ 

i mi 

from Eq. (70) of [2]. The particle interpolation functions satisfy the identity 
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which is Eq. (50) of [2]. We Fourier transform the equations in space and obtain 

6/1(k) = -/GB; At2 c rc(k,) k&, (k,) 4(k). 
P 

while for the explicit contribution to the charge density we have 

p(k) = -co,’ At’(X/A At’ -p) r K(kp) k, S;(k,) q(k). 
P 

The explicit contribution to the charge density was obtained by subtracting the 
implicit increment to the particle displacement response from the total response 
X/A At2 -,!3. The modifications in p(k) due to the spatial grid were derived in [9] and 
[lo]. Finally, from Poisson’s equation -V’o =p + 6~ we obtain the cold-plasma 
dispersion relation 

E = 1 + (X/A Ar’) co; At’K-’ 1 k&k,) S;(k,) = 0, 
P 

(35) 

where k, = k -pk,, k, = 24A.q and -K’, iK(kp), and S,n(kp) are the Fourier 
transforms of the difference representations d2/dx2, d/dx and the mth order particle 
spline, e.g., S,(k) = [sin(k Ax/2)/(k Ax/2)jmf’. This result was anticipated from the 
analysis of [9]. 

The solutions of Eq. (15) are identical to those described in [3 j with no grid effects 
if we replace r~i At2 with wj At’ K-2 C kpK(kp) Sk(k,) in the earlier analysis. In 
other words, the solutions of the C and D scheme dispersion relations described in 
[3] exactly correspond to the solutions of Eq. (15) here, if we include the k Ax- 
dependent correction factors in the definition of ui At’ (see Fig. 1, for example). For 
finite U.J~ At2, the grid introduces k Ax corrections to the dispersion relations in the 
usual way [IO]; grid effects are especially pronounced as k approaches n/Ax. For 
k Ax # 71 and wi At2 --) 00, grid effects are negligible. 

For sake of definiteness and to correspond to simulation examples described here 
subsequently, Eq. (15) has been specialized to momentum conserving schemes. We 
have also analyzed the linear dispersion relation for simple harmonic oscillations in a 
Hamiltonian algorithm with a direct implicit field solution [2j. This analysis recovers 
the result of Appendix B in [ 111; there are 110 grid modifications to the cold plasma 
dispersion relation in the Hamiltonian algorithm, 

E = I + (X/A At’) co; At’ = 0. 1161 

[As in the case of explicit formulations, energy is not necessarily conserved by the 
implicit version of the Hamiltonian method for finite At.] 

When inconsistent spatial smoothing or ad hoc spatial differencing is introduced, 
Eq. (15) is altered. In particular, if -V . [xcr’ V &(“+” ] in Eq. (5) is inconsistently 
smoothed or its differencing simplified, the modified dispersion relations are 
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FIG. 1. (a) Stability diagram for difference schemes with c,, , c, # 0 and c,>> = 0, CA = c,, + l/cc; At’ 
from [3 1. The values of c,,, c1 ? and CJJ~ At’ are redefined to include the modifications due to spatial 
differencing and smoothing, e.g., see Eqs. (15) and (17). or the shifts due to extrapolation, as in 
Eqs. (20) and (26). The locus of points, along which the maximum value of 1~1 is minimized, is labeled 

14nin-mar. The absolute minimum 1 z 1 of the most weakly damped normal mode occurs at c0 z 0.3, 
c,~O.04 and lzl~O.5. (b) The Iz/ mtn ma\ curve minimized with respect to cr plotted against 
c(,. (c) The IzI m,n-maY curve minimized with respect to CA plotted against cr. 

where E is given in Eq. (15), with O.I~ At* -+ s”kkoi At*, j3 = c,, or d; ’ for the C or D 
schemes, and (Sk - 3;) is the Fourier transform of the consistent smoothing operator 
minus the inconsistent smoothing operator and/or correction for simplified dif- 
ferencing. 

We observe in Eqs. (12), (13), and (17) a similarity in the forms of the deviation 
from exact convergence and the shifts of the dispersion relation. All are proportional 
to the differences of smoothing or difference operators weighted by ,L?oJ~ At2. 

An example of the influence of spatial differencing on linear dispersion and the 
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changes produced by simplified differencing [2] is given as follows. For iinear 
weighting, S, = [sin(k, dx/2)/(k, AX/~)]*. Birdsall and Langdon [lo] show that 

K-‘x k,K(k,) S,(k,) = cosi(k4x/2), 
P 

where K(!cJ = k, sin(k, Ax)/(k, Ax) and K2 = k2 [sin(k dx/2k dx/2)]’ for two-cell and 
three-cell centered first and second difference operators. .4s described in [Z], the 
Fourier transform of the strictly differenced --V . XC S# contains sin’(kdx)/As 
because of the product of the centered two-cell difference operators, in contrast to the 
corresponding K2 = k2 [sin(k Ax/2)/(k Ax/2)]’ that arises in simplified differencing. 
Hence, s”,/gL = [(sin k 4x)/2 sin(k AX/~)] ’ = cos ‘(k AX/~), where .!?k and $; were 
introduced in Eq. (17); and the linear dispersion relations for a cold non-drifting 
plasma are 

1 + (X/A At’) 0.; At’ cos’(k Ax,‘2) = 0 (18aj 

for strict differencing and 

1 + (X/A At2 -/3) w; At2 cos’(k AX/~) + /3w; At2 = 0 (18bj 

for simplified differencing. Equations (14a) and (14b) give X/A At2 for C and D 
schemes. 

For strict dfferencing the solutions of Eq. (18a) correspond to those described 
earlier in [3] if the factor cos’(k AX/~) is absorbed into the effective value of ~5 At’ 
as indicated in our discussion of Eq. (15). The dispersion relation for C schemes with 
simplified differencing becomes 

I + [c,/cos*(k Ax/2) + cl/z + c2/zz .a. + z/(z - l)‘] 

x u; At’ cos’(k 4x/2) = 0. 119) 

To use the solutions already obtained in [3], we define an effective value of W; dt’ as 
wi At2 cos2(k Ax/2) and an effective cO as c,/cos’(k Ax/2). Because cos’(k A.xj2j < 1, 
the effective value of OJ~ At’ is reduced and the effective value of cO is increased. For 
OJ~ At2 cos’(k AX/~) Q 1, the shift in the real part of the plasma frequency is 
[wp At cos(k AX/~)]’ [l/12 - c,/cos’(k AX/~) - c, - . . . ]/2 and the damping rate is 
decreased by grid effects, Im(w/o,) = [ojP 4t cos(k Ax/2)]‘(c, + 2c, + . ..)/2. 
Because of the spatial differencing, the effective value of c/, in Fig. 1 is ~6 = 
(cO + l/u; At’)/cos’(k Ax/2) with simplified differencing, which increases mono- 
tonically with increasing k Ax < rr. The value of c, is unaffected, and the operating 
point of the C, scheme moves to the right in Figs. la and lb. If the values of c,, and 
c1 correspond to those in the optimized C, scheme [J], where z is a minimum in 
Fig. 1, the effect of finite k Ax is to shift z to larger values because of the increase in 
the effective c;. This indicates a decrease in the damping when simplified differencing 
is used. Spatial smoothing of the shortest wavelength modes would be beneficial here. 
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For o;dt’ -+ co and all wavelengths such that cos2(kd,u/2) = 0, the optimized C, 
scheme with strict differencing remains at the c,,, i c operating point that maximizes 
damping. 

A specific illustration of the changes in linear dispersion caused by spatial 
differencing is given in Table I. We have used Eqs. (15), (17t( 19) to analyze results 
from the one-dimensional DIMPLES [6] code for a centered implicit integration 
scheme (c, = l/4, c,~, = 0). Table I gives a comparison of code results for a cold 
plasma oscillation with solutions of Eqs. (18) and (19) for uc)p At = 10 and linear 
weighting. Tabulated is r = 27t/&~, where 6w = n/At - w. The period r was measured 
directly in the simulation as twice the time interval separating successive minima in 
the electric field energy density of a particular Fourier mode. The results from 
DIMPLES are well described by the linear dispersion theory for both strict and 
simplified differencing. 

4.2. Influence of Electric-Field Extrapolation 

In an earlier paper [2] and in Section 3, we described how implicit solution of the 
field and particle equations attempts to reduce the error in the approximate solution 
of the field equation to zero. As shown in our calculations of convergence here and in 
[2], if spatial smoothing is consistent and strict differencing is used, then errors that 
are linear in 8x vanish identically. However, the coupled field and particle equations 
are nonlinear. Errors that are nonlinear in 6x emerge in the implicit charge density 
calculated in any method based on linearization; this includes both the direct and 
moment methods. Here we address extrapolation methods that reduce nonlinear 
errors and assess what changes in linear dispersion characteristics result. 

One of the more obvious sources of errors in implicit algorithms arises from 
particles that cross cell boundaries. In the scheme outlined in Eqs. (2t(4), 
linearization is made around particle positions .?,, + 1. However, the increment to ,u’,, + , 
given by p At2a,!+, may cause cell crossings and hence nonlinear errors in P,~+, that 
clearly are omitted in Eq. (2). 

Linearization made around a better estimate of x,, i, an x!,‘:, that is an 
extrapolation including electric-field effects, should better resolve field variations and 
reduce nonlinear errors in the implicit prediction of pn+, . This could result in better 
accuracy for the same number of corrector iterations, especially for no corrector 

TABLE I 

Cold Plasma Oscillation Period for w,dt= 10 

k4x 

n/16 
7[/8 

Strict Differencing Simplified Differencing [2] 

r bxory 5 rrtleary 

157.9 158.3 142.9 142. I 
156.7 156.2 113.2 113.1 
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iterations, or reduce the required number of iterations. Actually achieving these 
improvements with clever extrapolation depends on whether stability and desirable 
linear dispersion properties are compromised and may require deposition of 
additional particle data on the mesh. 

Consider the iterative form of Poisson’s equation given by Eq. (5). We allow for 
the possible use of the old electric field E, as a first estimate of the advanced electric 
field EIP,‘. , = E,. We also include inconsistent spatial smoothing or ad hoc spatial 
diffe;encing represented by the operator 9. Poisson’s equation becomes 

where x = /k~~(x~~ i) At’, q%,,+ i = &b,,+ 1 + qbf’i,, 4:‘: l = 194,. and 6 = 0 or 1. For class 
C schemes, the particle equations are 

xIp11 = xn + z’,+ l/Z At + co(8 - 1) a, At’ + ~,(a, - un-L) At’ + ... (2Ia) 

L),,+~~~ = v,-~,~ + a,, At (2ib) 

x,+1 = XT; 1 + ~,(a,, + 1 - &I,) At2 (ZIG) 

and p = co. This is an example of the predictor scheme described in Section 3.2 of 

PI. 
We linearize these equations for the case of a cold, uniform plasma, Fourier 

transform in space, and absorb spatial-grid modification factors in the effective value 
of wi At2 [see Eqs. (15) and (17)]. With z = exp(--iw At), we obtain a dispersion 
relation for a cold plasma 

1+S”,w;At2[~o+~1/~+~2j~Z+~~~+~/(~-~)~] 

= (s”, - 3;) cow; A?( 1 - B/z), (22) 

where gk and ,!?A are the Fourier transforms containing the grid modification factors 
for strict differencing and consistent smoothing (3,) and for ad hoc differencing and 
inconsistent smoothing (g;). 

Part of the right side of Eq. (22) was obtained previously in Eq. (17). The new 9/z 
term in Eq. (22) creates a phase error originating from the use of the extrapolated 
electric field. This new term can be combined with the cl/z term on the left side and 
leads to a new value for the effective ci . Note, however, that the right side of Eq. (22) 
vanishes when ,!?, = ,!?L, and the dispersion relation Eq. (15) is recovered. Thus, we 
see that with inconsistent smoothing or ad hoc differencing (Sk - ,!?L # 0). the 
effective values of co and c, are both changed. In normal circumstances, the shortest 
wavelength modes will be the most affected. Increasing co improves stability, while 
increasing cr degrades stability and produces more damping in stable oscillations [3]. 
At small CO; At’, co and c, contribute additively in shifting the real part of the 
frequency [3]. If the combination of ad hoc differencing and extrapolation of the 
electric field (B= 1) leads to instability near the Nyquist frequency, increasing cO can 
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restore stability. With the appropriate re-definitions of cO and c,, Fig. 1 displays 
many of these properties. Increased implicitness and dissipation were required to 
ensure good code performance when simplified differencing was employed in Mason’s 
implementation of the implicit moment method [ 121. Dissipation necessarily accom- 
panied the implicitness because of the first-order-accurate temporal differencing used 

[31. 
A similar analysis can be performed for D schemes. In place of Eq. (21) we have 

xilo; , = x, + ~1;‘; , i2 At (23a) 

L,(O) 
n+ I;? = L’n-I,? +~At-~(S.-,;~-C,~~~~*)-~(L.,,-?;?-L.,,-..i)-..- 

0 0 0 

Pb? 

x n+ I =x,, + u,+ ,i2 At (23~) 

For D schemes p = d; I. The resulting dispersion relation for a cold, uniform plasma 
is then 

-2 
1 +S,w;At’ (zpL1)2 D (24) 

where D=do+d,/z+d2/z2+mee. As with C schemes, extrapolation of the electric 
field in conjunction with inconsistent smoothing or ad hoc differencing can introduce 
a phase shift in the dispersion relation in the form of the 9/z term. 

Both extrapolation schemes suggested in the preceding can produce phase errors 
that alter the linear dispersion properties and the stability characteristics. In general, 
these modifications are largest where 1 gk - sil is biggest, typically at very short 
wavelengths. However, an alternative extrapolation scheme that cannot shift the 
dispersion and linear stability characteristics might be more desirable. 

The following class of extrapolation schemes does not introduce phase errors in the 
dielectric response. Consider a general method for extrapolating to xI~:~, and define 
G+, =xntl -Lk+l At*. If we subtract x:1 l from x,+r, we obtain 

x II+1 
-<y(o) - 

nt1- Pa n+l At2 +&,+l -x:1,. (25) 

Forming the charge density pn+, 
around xi:: 1, we find 

from a linear expansion of T qS(JCi - xi,,r+ ,) 

P x+1= P’O’ .+1-CqS’(Xj--xjp~t,)CBai.n+,At2 +zi,,+,-X!P!z+~>. (26) 
i 



IMPLICIT PARTICLE SIMULATION 

The corresponding field equation is 

--0 * (1 +x) V# n+l=SqS(Xi--XiPn)+l)-rqS’(Xj-xjp~+,) 
i i 

x (zii,n+* -xI$+l>T (27) 

where x =Pu~ At2 is constructed from particle positions {Ajax+ ii. The right side of 
Eq. (27) requires deposition of two scalar quantities accumulated from the particle 
data, of which one is the charge density PIP), . 

The derivation of the linear dispersion relation for Eqs. (25) and (27) in the limit 
of a cold, uniform plasma.is straightforward. Including the possibility that the suscep- 
tibility term on the left side of (27) is inconsistently smoothed or differenced in space, 
we obtain 

1 + &co; At* X/(/4 At2) = (.!$ - 9; j pw; At’, izaj 

where X/(ii At*) is given in Eqs. (14a) and (14b) for the C and D schemes and ,L? = c, 
and d; ’ ) respectively. The definitions of gk and g; are identical to those introduced 
in Eq. (22). This result is identical to Eq. (17); no phase-shift producing term has 
been introduced. Note also that the linear dispersion relation is independent of the 
specific choice of x~“~, . Although the right side of Eq. (27) is a representation of P; it 
is not the same as p’, even for linear S, when Ifi - -Y!:/ + ,I > Ax; and for nonlinear 3. 
it is not equal to b for any I-ei - XI::+ i I. However. in the linear dispersion relation for 
cold plasma oscillations, the right side of Eq. (27) is the same as p’ and x(.~iy,‘,- ,) can 
be set equal to I(.<~). 

5. CONCLUSION 

Analysis and code experimentation indicate that inconsistent smoothing, ad hoc 
spatial differencing, and electric-field extrapolation can modify the convergence and 
linear-dispersion characteristics of all implicit simulation schemes. Inconsistenr 
smoothing and simplified differencing can degrade convergence; the concomitant shift 
in the linear dispersion relations and the loss of convergence share a common 
mathematical structure. With adequate suppression of oscillations at w zz n/Al, 
electric-field extrapolation should improve nonlinear accuracy of the solution of the 
field and particle equations. Our analysis of two general schemes combining 
extrapolation with implicit field solution demonstrates that it is possible to avoid the 
introduction of phase errors and the associated degradation of stability. 

In general, the changes in convergence and linear dispersion properties due to 
inconsistent smoothing, ad hoc spatial differencing, and extrapolation can be 
substantial, but difficulties can be circumvented. The most significant changes occur 
at short wavelengths where smoothing should help control unwanted effects. 
Furthermore, our analysis suggests how to alter parameters in the C and D schemes 
to compensate for any substantive degradation of stability and dispersion charac- 
teristics. Similarly, Denavit’s analysis of linear dispersion including finite Ot and dx 
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effects guides algorithm optimization and has helped in understanding simulation 
performance of the implicit moment method [ 131. 

A number of important related issues have not been addressed here. For example, 
one wonders what influence simplified differencing has on artificial cooling and 
heating [3, 121. By causing mild numerical instability, simplified differencing may be 
responsible for artificial plasma heating. On the other hand, if phase errors in the 
algorithm lead to numerical cooling as described in [3, 51, the cooling rate is propor- 

tional to (&(k, k . v)]-’ Im(X/A), where X/A is calculated in Eqs. (14a) and (14b) for 
C and D schemes; and the choice of simplified or strict spatial differencing then 
modifies the effects of the.spatial grid and perhaps indirectly the cooling rate. 

Code experience [l, 4, 61 with strict and simplified differencing has been 
encouraging; the direct method has proven reliable at very large time steps, e.g., 
oP, dt = lo3 141, and accurately reproduces low-frequency phenomena in one- and 
two-dimensional applications. The accuracy and convergence of algorithms without 
iteration through the particle and field equations on each time step are good. 
Analyses of convergence and linear dispersion continue to guide both algorithm 
design and code performance. 
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